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Other group activities

¢ The research team is heavily involved with high-
performance reconfigurable computing, evaluation
of new hardware (such as multicore CPUs), as well
as associated languages and tools

¢ GWU is co-host of CHREC
http://www.chrec.ufl.edu/ ; ARSC is a charter
member

¢ Recent publications include an analysis of high
level languages for FPGAs

¢ Next week: multicore symposium (accessible via
AccessGrid). See www.arsc.edu




String Matching is the basis for sequence alignment
(Introduction)

¢ String Matching

0 Detecting the occurrence of a particular substring, called
the pattern, in another string, called the text

¢ Types of String matching:
0 Exact string matching
0 Approximate string matching

¢ Exact string matching:

0 Involves match patterns, where they exist completely, that
iIs unbroken and with no irrelevant data in between any
letters

0 Numerous Applications : NIDS, text editing, ...etc.

¢ Approximate string matching:
0 Pattern rarely matches the text completely

0 Finds application in Computational biology (DNA sequence
alignment), image detection, handwriting recognition...etc.



Sequence Alignment
(Smith-Waterman Algorithm)

¢ Why align two protein or DNA sequences?

0 Determine whether they are descended from a common ancestor
(homologous)

0 Infer a common function
0 Locate functional elements

0 Infer protein structure, if the structure of one of the sequences is
known

¢ S-W genomic comparison and alignment algorithm
0 Similar to BLAST, but 10x slower

0 Provably optimum- the “gold standard” for alignment algorithms
0 Based on Dynamic Programming

¢ Two-step process
0 Create scoring matrix and find maximum score

“forward pass”
0 Work back to determine alignment

“traceback”



Sequence Alignment Algorithms

¢ Dynamic Programming
0 Break large problems into smaller, simpler sub
problems
0 Solve sub problems optimally and recursively

0 Use these optimal solutions to construct an
optimal solution for the original problem

¢ The Smith-Waterman algorithm
0 Implements the dynamic programming technique
0 Performs | that is, for

determining similar regions between two
nucleotide or protein sequences



Global vs. Local Alignment

Global Alignment

Best match between
complete sequences

Sequence 1
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Implementation for Hardware

¢ Cellular Automata Approach
0 Matrix elements are identical PEs/Cells

0 Cells communicate with their neighbors
updating the local scores and propagating the
maximum local score

0 Maximum score found in the last cell calculated

¢ Virtualization & Scheduling

0 Using sliding window to traverse entire virtual
scoring matrix

0 Last column of every iteration is fed back to the
first column in the following iteration



Anti-Diagonal Wave-front
Data Dependency

Database Sequence

\\
Query Sequence \\\
N
0 All cells along the \\\
same anti-diagonal \\
are independent AN
Can be computed in
parallel
0 Matrix is filled anti- ) Completed PEs/Cells
diagonally = Working PEs/Cells

—»> Computational Flow
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Computing the Similarity Matrix
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Implementation for Hardware (cnt’d)
(32x1 Sliding Window)
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Data Transfers Scenario

Clock Cycles 0 - 31 I_l |_| 32 symbols,1*every clock

Data Sent From QDR1

to FPGA for
Sending Data to Processing
QDR 1
S-W Scoring on FPGA
Microprocessor ~— s FPGA Sets Done Flag
Memo al
Sending Max
Score From
QDR 2 to RAM
Maximum Score sent
to QDR 2
...... QDR 2
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Implementation for Hardware (cnt’d)
(MPI Implementation)
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Cray XD1 System Architecture
(Six Chassis)
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SRC Hi-Bar™ Based Systems

System Network Interconnect (Hi-Bar) sustains 1.4 GB/s per port with
180 ns latency per tier

¢

Up to 256 input and 256 output ports with two tiers of switch
Common Memory (CM) has controller with DMA capability
Controller can perform other functions such as scatter/gather
Up to 8 GB DDR SDRAM supported per CM node

® 6 o o

System Network Interconnect
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MPI Utilization on SRC-6

System Network Interconnect

U] ]

Interface Interface
Processol Processol Reconfigurablé  Reconfigurable Common
emo mory T Memory
. FPGA | FPGA FPGA | FPGA
" Gig U
<P Ethernet <=y
PCI-X Eto PCI-
MPI

& Unutilized uP/FPGA
uP: Microprocessor

0 Network Interface Cards cannot be efficiently shared
Only two MPI processes were implemented
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MPI Utilization on Cray-XD1
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0 All Nodes were exploited using MPI

However, only one of the two microprocessors on each node

sufficed
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Performance Results

Expected Measured
Throughput Throughput
(GCUPS) BEEEIRE (GCUPS) BESSRp
FASTA Opteron DNA NA NA 0.065 1
SSEARCH34 | 2.4GHz Protein NA NA 0.130 1
1 3.19 > 12.21 49 > 188
Engine/Chip S ek >4 Chips 154 Chips
4 12.4 > 42.7 1 191 - 656
SRC Dl Engines/Chip e e -4 Chips 124 Chips
100 MHz (32x1) 8 25.6 394 241>741> 371 > 1138
Engines/Chip ) 4 Chips 14 Chips
: 312> 11.71 24 > 90
Protein 3.2 24.6 >4 Chips 154 Chips
GWU
1 6.4 98 5.9 > 32 91 > 492
Engine/Chip ) MPI 1>6 nodes | MPI1->6 nodes
4 23.3 > 120.7 359 > 1857
XD1 DNA Engines/Chip 25.6 Sk MPI 1>6 nodes | MPI1->6 nodes
200 MHz (32x1) 8 51.2 788 45.2 > 181.6 695 > 2794
Engines/Chip ) MPI 1>6 nodes | MPI1>6 nodes
. 59> 34 45 > 262
Protein 6.4 49 MPI 156 nodes | MPI1>6 nodes
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SRC-6

DNA



Smith-Waterman Scalability on SRC-6
(window of 32x1 DNA residues)
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Time Distribution of Smith-Waterman on SRC-6

(window of 32x1 DNA residues)
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Time Distribution of Smith-Waterman on SRC-6

(window of 32x1 DNA residues)
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Time Distribution of Smith-Waterman on SRC-6

(window of 32x1 DNA residues)
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SRC-6

Protein



Smith-Waterman Scalability on SRC-6

(window of 32x1 Protein residues)

Database Size = 64K Protein Residues
Query Size = 64x32 Protein Residues
(1 Engine / Chip)
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Time Distribution of Smith-Waterman on SRC-6

(window of 32x1 Protein residues)
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Cray-XD1

DNA



Smith-Waterman Scalability on XD1
(window of 32x1 DNA residues)
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Smith-Waterman Scalability

on XD1

(window of 32x1 DNA residues)

Speedup
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Time Distribution of Smith-Waterman on XD1

(window of 32x1 DNA residues)
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MPI Overhead and Computation Speedup

(window of 32x1 DNA residues)
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Smith-Waterman Scalability on XD1

(window of 32x1 Protein residues)

Query Size = 64x32 Protein Residues
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Smith-Waterman Scalability on XD1

(window of 32x1 Protein residues)

Speedup
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Time Distribution of Smith-Waterman on XD1

(window of 32x1 Protein residues)
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MPI Overhead and Computation Speedup

(window of 32x1 Protein residues)
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Savings of HPRC

(Based on SRC-6)

SAVINGS
Application Speedup
Cost Savings | Power Savings | Size Reduction
Smith-Waterman 1138 6x 313x 34x

(DNA Sequencing)

¢ Assumptions
0 100% cluster efficiency
0 Cost Factor uP : RP 2> 1 : 200

0 Power Factor uP : RP > 1 : 3.64
Reconfigurable processor (based on SRC-6): 200 W

uP board (with two uPs): 220 W
0 Size Factor uP : RP > 1:33.3

Cluster of 100 yPs = four 19-inch racks
» footprint = 6 square feet
Reconfigurable computer (SRC MAPstation™)
» footprint = 1 square feet
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Savings of HPRC

(Based on one Cray-XD1 chassis)

SAVINGS
Application Speedup
Cost Savings Power Savings Size Reduction
Smith-Waterman 2794 28x 140x 29x

(DNA Sequencing)

¢ Assumptions
0 100% cluster efficiency
0 Cost FactoruP : RP 2> 1:100

0 Power Factor uP : RP > 1: 20

Reconfigurable processor (based on one XD1 Chassis):

2200 W

uP board (with two uPs): 220 W

0 Size Factor uP : RP > 1 :95.8

Cluster of 100 yPs = four 19-inch racks
» footprint = 6 square feet
Reconfigurable computer (one XD1 Chassis)

» footprint = 5.75 square feet
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Conclusions

¢ Potential of using multi-node HPRCs for
computational biology applications investigated

¢ Scalability issues for S-W algorithm were
characterized

¢ Orders of magnitude speedup demonstrated

¢ Scalability on both machines proved almost ideal
when the number of nodes increased

¢ As number of nodes exceed a certain limit,
scalability will decrease due to communications
overhead

¢ FPGA local memory still relatively small compared
to the problem size
43



